Identification of the in Vivo Function of the High-Efficiency d-Mannonate Dehydratase in Caulobacter crescentus NA1000 from the Enolase Superfamily

نویسندگان

  • Daniel J. Wichelecki
  • Dylan C. Graff
  • Nawar Al-Obaidi
  • Steven C. Almo
  • John A. Gerlt
چکیده

The d-mannonate dehydratase (ManD) subgroup of the enolase superfamily contains members with varying catalytic activities (high-efficiency, low-efficiency, or no activity) that dehydrate d-mannonate and/or d-gluconate to 2-keto-3-deoxy-d-gluconate [Wichelecki, D. J., et al. (2014) Biochemistry 53, 2722-2731]. Despite extensive in vitro characterization, the in vivo physiological role of a ManD has yet to be established. In this study, we report the in vivo functional characterization of a high-efficiency ManD from Caulobacter crescentus NA1000 (UniProt entry B8GZZ7) by in vivo discovery of its essential role in d-glucuronate metabolism. This in vivo functional annotation may be extended to ~50 additional proteins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discovery of Function in the Enolase Superfamily: d-Mannonate and d-Gluconate Dehydratases in the d-Mannonate Dehydratase Subgroup

The continued increase in the size of the protein sequence databases as a result of advances in genome sequencing technology is overwhelming the ability to perform experimental characterization of function. Consequently, functions are assigned to the vast majority of proteins via automated, homology-based methods, with the result that as many as 50% are incorrectly annotated or unannotated ( Sc...

متن کامل

Investigating the Physiological Roles of Low-Efficiency d-Mannonate and d-Gluconate Dehydratases in the Enolase Superfamily: Pathways for the Catabolism of l-Gulonate and l-Idonate

The sequence/function space in the D-mannonate dehydratase subgroup (ManD) of the enolase superfamily was investigated to determine how enzymatic function diverges as sequence identity decreases [Wichelecki, D. J., et al. (2014) Biochemistry 53, 2722-2731]. That study revealed that members of the ManD subgroup vary in substrate specificity and catalytic efficiency: high-efficiency (kcat/KM = 10...

متن کامل

A comparison of the Caulobacter NA1000 and K31 genomes reveals extensive genome rearrangements and differences in metabolic potential

The genus Caulobacter is found in a variety of habitats and is known for its ability to thrive in low-nutrient conditions. K31 is a novel Caulobacter isolate that has the ability to tolerate copper and chlorophenols, and can grow at 4 ° C with a doubling time of 40 h. K31 contains a 5.5 Mb chromosome that codes for more than 5500 proteins and two large plasmids (234 and 178 kb) that code for 43...

متن کامل

D-xylose degradation pathway in the halophilic archaeon Haloferax volcanii.

The pathway of D-xylose degradation in archaea is unknown. In a previous study we identified in Haloarcula marismortui the first enzyme of xylose degradation, an inducible xylose dehydrogenase (Johnsen, U., and Schönheit, P. (2004) J. Bacteriol. 186, 6198-6207). Here we report a comprehensive study of the complete D-xylose degradation pathway in the halophilic archaeon Haloferax volcanii. The a...

متن کامل

Suppression of Amber Codons in Caulobacter crescentus by the Orthogonal Escherichia coli Histidyl-tRNA Synthetase/tRNAHis Pair

While translational read-through of stop codons by suppressor tRNAs is common in many bacteria, archaea and eukaryotes, this phenomenon has not yet been observed in the α-proteobacterium Caulobacter crescentus. Based on a previous report that C. crescentus and Escherichia coli tRNA(His) have distinctive identity elements, we constructed E. coli tRNA(His) CUA, a UAG suppressor tRNA for C. cresce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2014